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Abstract—

In this paper we present an image segmentation framework
for FOXP3+ Biomarkers in Follicular Lymphomas to determine
their amount with respect to the rest of the TMA core. Our
process consists of first removing artifacts introduced by the
TMA building process by passing them through a segmentation
U-Net model. Then, the filtered images are passed through a
different U-Net model to obtain biomarker segmentation. The
segmented area of the biomarkers is calculated and compared
relative to the area of the core tissue to determine the Positivity.
The Framework proposed achieves good artifact removal results
and comparable biomarker segmentation to the currently used
Aperio software.

I. INTRODUCTION

Tumor classification systems have been an area of
major interest in Machine Learning mainly because clinical
outcomes depend on the long-term experience of pathologists,
wherein even amongst experts there is disagreement. Deep
Learning is a growing technology in the field of machine
learning and it has gotten the attention of many researchers,
Jiang et al [1] use convolutional neural networks with small
SE-ResNet to classify breast cancer histopathological images.
Our goal is to create a Computer-aided diagnosis for FOXP3+
Biomarkers in Follicular Lymphomas.

Follicular lymphoma (FL) is the most common indolent non-
Hodgkin lymphoma in the world. Survival and progression of
FL has been shown to be significantly associated with certain
immune cell profiles, one of which is that of regulatory
T cells, whose distribution has shown significant impact
in the clinical outcome of patients. The forkhead/winged
helix transcription factor 3 (FOXP3) is a transcriptional
factor shown to be the key control gene in the development
and function of regulatory T cells, and FOXP3+ T cells
represent the major regulatory T cell population critical for
the self-regulation of the immune system.

Currently, Tissue Microarrays (TMA) are the preferred
diagnostic and research tool for FL, since they allow the
multiple use of often limited biopsy material in a cost time
effective manner in which samples are exposed to the same
experimental conditions during analysis. As described by
Jawhar [2]. Tissue microarrays are composite paraffin blocks
constructed by extracting cylindrical tissue core “biopsies”
from different paraffin donor blocks and re-embedding these
into a single recipient (microarray) block at defined array
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coordinates. These blocks often contain impurities and flaws
called artifacts which can interfere with accurate counts and
distribution of markers. Although there exist visualization
tools such as Aperio to assist pathologists in analyzing
TMA data, there is no automated solution that takes into
account artifacts and is able to localize biomarkers, hence
introducing additional bias ontop of the inherent bias from the
pathologist’s assessment. In this project we aim to develop
a framework utilizing TMA image data collected by British
Columbia Cancer Institute, to perform both artifact removal
and biomarker segmentation.

A U-Net architecture is favoured in Biomedical Image
Segmentation due to the limited annotated data, as
Ronneberger et al [3] describe, it is able to yield more
precise segmentation while utilizing fewer training samples.
The architecture consists of the usual contracting network
with pooling operators, but it is also supplemented with
successive layers of upsampling operators instead of pooling.
Additionally, concatenation of previous layers allows for the
preservation of lower order features in later steps. For these
reasons we utilize a UNet architecture to segment both the
artifacts and the biomarkers.

II. ARTIFACT SEGMENTATION

A. Network Architecture

In order to accurately conduct biomarker segmentation it is
necessary to first remove artifacts from the image, otherwise
there is a significant bias introduced which leads to erroneous
results. Fig. 1 displays a sample TMA image of a core cell,
where the uniformly dark segment is an artifact.

The U-Net architecture used for the segmentation is illus-
trated in Fig. 2. It consists of a contracting path on the left
side and an expansive path on the right side. The contracting
path follows the architecture similar to a convolution neural
network, of two 3x3 convolutions, a 2x2 max pooling opera-
tion and each followed by a rectified linear unit (ReLU). The
expansive path consists of an upsampling of the feature map
followed by a 2x2 up-convolution and a concatenation with
the correspondingly cropped feature map from the contracting
path then two 3x3 convolutions, each followed by a ReLU.



Fig. 1. TMA Image of Cell with Artifact
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Fig. 3. Patched Sample Image

B. Training

The dataset received from BC Cancer Research Institute
contained high resolution images (2886x2886) without annota-
tions, and training the data on a U-Net architecture in contrast
to a traditional deep neural network was chosen to reduce
the amount of annotated pictures needed for accurate predic-
tions and to make the model less computationally expensive
and accelerate experimentation with different hyperparameters.
One thing noticed from the first mini-batches trained through
the model, was that due to the high resolution of the images
the time complexity was not efficient leading to a very long
training time. Splitting the images into patches of equal size
(481x481) allowed to both reduce the time complexity of the
model and increase the dataset of annotated images since one
original image was now transformed to 36 patches of equal
size (see Fig. 3). When reconstructing the original image an
issue arose while fusing the masks from the segmented patches
outputted from the neural network, this was due to the inability
of the model to extrapolate dependent data from neighbouring
patches, and was resolved by adding padding to the patched
images. The hyperparameters used for the neural network can
be found in more detail in Table 1.

TABLE I
ARTIFACT SEGMENTATION HYPERPARAMETER SELECTION
Hyperparameter Value
Learning Rate 0.0001
Activation Function (Convolution) ReLU
Activation Funtion (Output) Sigmoid
Loss Funtion Binary Cross Entropy
Optimizer Adam

C. Results

Fig. 4 shows artifact segmentation and removal for three
samples. The image on the left corresponds to the raw TMA
core, followed by the TMA core with the artifact removed.



Fig. 4. Examples of Artifact Removal

III. BIOMARKER SEGMENTATION
A. Network Architecture

Fig. 5. Biomarker from sample TMA Image

The objective of the analysis is to segment biomakers from
TMA cores (see Fig. 5). For reasons similar to the Artifact
Segmentation section (efficient allocation of limited annotated
images, lower time complexity) the neural network architec-
ture chosen was U-Net. Initially, the same architecture as
artifact segmentation was used, and through experimentation
it was noted that the output collapsed to zero due to excessive
convolutions and up-sampling for the given resolution. Hence,
a scaled down version with one less contracting and expansive
layer was used (see Fig. 6).

Additionally, upon initial experimentation, checkerboarding
was heavily present in the output. Checkboarding refers to the
grid-like artifact that can be seen in Fig. 7.
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Fig. 6. Biomarker Segmentation U-Net Architecture

(a) Checkerboarding (b) No Checkerboarding
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Fig. 7. An example of model output with a) Checkboarding and b) no
Checkerboarding. Note these are predictions of different inputs.

This was found to arise from the use of Conv2DTranspose,
which was solved by utilizing UpSampling2D with bilinear
interpolation.

To save computation time, any TMA cores with less than
10% of tissue present were disregarded before being fed into
the model.

B. Training

The dataset for the biomarker neural network consisted of
artifactless imaged produced by the artifact removal pipeline.
Patches as shown in the previous section were used to preserve
global and local structure with uniform size of 224x224.

TABLE II
BIOMARKER HYPERPARAMETER SELECTION
Hyperparameter Value
Learning Rate 0.0001
Activation Function (Convolution) ReLLU
Activation Funtion (Output) Sigmoid
Loss Funtion Dice Loss
Optimizer Adam

For the Loss function, Dice Loss was used to combat class
imbalance. Since the positive markers occupy a much smaller
area than the rest of the patch, it was necessary to weight the
markers more. After 150 Epochs, the Dice Loss for the training
dataset was Dice= 0.00144, with a validation loss of Dice=
0.00165, suggesting a good fit to the labelled distribution.



— mrany
— vakdation_accuracy
— e ks

— vabidarion dice les

Fig. 8. Training History

C. Results

Fig 9. Show some results from marker segmentation. Of
interest is the last row of Fig. 9. where the raw TMA core
(left) show lymphoid follicles (brown tint), and the model
predictions clearly show clustering within those follicles. This
kind of mask could be useful for predicting distributions of
markers within follicles which have clinical significance [4]

Fig. 9. Marker Segmentation Results. Each row corresponds to a different
core. The first image is the raw TMA Core, followed by the predicted mask
and then the segmented image.

With the trained artifact segmentation and marker seg-
mentation models, the entire dataset was processed through
the pipeline. Processing times averaged 1.51s/it for artifact
removal and 1.2s/it for marker segmentation on a GTX 1050
Ti Max-Q. Processing times for a TMA core in Aperio were
reported to be between 10-15 minutes for a 4x 12 array without

any artifact removal. This places the model at around 4.6 —6.9
times faster with artifact removal (2.2 minutes for a TMA).

Afterwards, data for Aperio was obtained from BC Cancer
Agency. The metric of interest is Positivity, which refers to
the ratio of positive pixels to total tissue. After dropping nan
values from the dataset, there were 984 point of comparison
between the model and Aperio. Fig. 10 shows a log-log
plot of Aperio vs Model Positivity, which shows obvious
correlation. The clear skewness is potentially explained by
Aperio’s expected bias towards predicting larger values of
positivity since it does not have artifact removal, this is
discussed further in the Comments section. A linear regression
was computed which yielded R? = 0.4688.

Loglog plot of Aperio vs Model Positivity
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Fig. 10. Model and Aperio Comparison

D. Comments

It is difficult to interpret the comparison between the model
and Aperio since the underlying distribution inherently has
a high uncertainty. This devolves to comparing two methods
of fitting an uncertain distribution, each of which introduces
additional bias and uncertainty. Going through some of the
outliers in the Mean Squared Error comparison of Positivity

Nlositive) petween the model and Aperio reveals some
insights into the discrepancy observed. Fig. 9 demonstrates

that Aperio often labels artifacts as positive samples.



Fig. 11. The first row corresponds to TMA Core D_1_3_12. The first image
is the raw core, followed by the model prediction and Aperio’s prediction. The
model predicted Positivity= 0.026182, whereas Aperio predicted Positivity=
0.143681.

The second row corresponds to TMA Core D_1_5_12. In this case, the model

prediction was Positivity= 0.026182 and Aperio’s prediction was Positivity=
0.143681.

Additionally, there is also uncertainty regarding the back-
ground. Close contrasts make it difficult to segment markers
properly. Fig. 11. Shows an example where Aperio wrongly
classifies the background.

Fig. 12.
first image is the raw core, followed by the model prediction and Aperio’s
prediction. The model predicted Positivity= 0.022071 and Aperio predicted
Positivity= 0.174185. As shown, Aperio classifies sections of the background
incorrectly.

Background Outliers of section of TMA Core B_1_8_8. The

These two categories of outliers - Artifact and Background
- make up most of the samples falling outside one standard
deviation of the Mean Squared Error between Aperio and
Model Positivity. This suggests a large part of the variation
between both predictions is due to Aperio failing with artifact
and background predictions.

IV. CONCLUSION AND FUTURE WORK

The model developed through this project is able to
predict Positivity of FOXP3+ given a TMA core while
removing artifacts with satisfactory results. Regardless,
further improvements are proposed in order to better access
the accuracy of the model and expand its diagnostics
capabilities.

The output results have yet to be validated by experts
and pathologists although performance testing was done using

the Aperio software results. This is significant since Aperio
also tries to aide diagnosis, but comes with inaccuracies and
limitations of its own as stated in the Comments section.
Furthermore, the problem that this project aims to solve is
of high inherent uncertainty, and hence there can be major
discrepencies between the output and the expected result
depending on the variance of the input image. The model was
trained on limited annotated data, therefore an expansion of
the labelled dataset would most probably improve its overall
performance by capturing more of the inherent variation.
Finally to improve the capabilities of this diagnostic tool,
future steps include analyzing the marker distribution to
identify patterns which are clinically relevant and proven to
have impact on survival as analyzed by Farinha et al [4].
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